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GENERAL INTRODUCTION 

Introduction 

Catalysis is a very interesting area of chemistry, which is currently 

developing at a rapid pace. A great deal of effort is being put forth by both 

industry and academia to make reactions faster and more productive. One 

method of accomplishing this is by the development of catalysts. Enzymes are an 

example of catalysts that are able to perform reactions on a very rapid time scale 

and also very specifically; a goal for every man-made catalyst. A kinetic study can 

also be carried out for a reaction to gain a better understanding of its mechanism 

and to determine what type of catalyst would assist the reaction. Kinetic studies 

can also help determine other factors, such as the shelf life of a chemical, or the 

optimum temp>erature for an industrial scale reaction. 

An area of catalysis being studied at this time is that of oxygenations. Life 

on this earth dep)ends on the kinetic barriers for oxygen in its various forms. If it 

were not for these barriers, molecular oxygen, water, and the oxygenated 

materials in the land would be in a constant equilibrium. These same barriers 

must be overcome when performing oxygenation reactions on the laboratory or 

industrial scale. By performing kinetic studies and developing catalysts for these 

reactions, a large number of reactions can be made more economical, while 

making less unwanted byproducts. For this dissertation the activation by 

transition metal complexes of hydrogen peroxide or molecular oxygen 

coordination will be discussed. 
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Oxidation of Two Oiganic Functionalities 

The oxidation of secondary hydroxylcimines ((R2R'C)2NOH) and alcohols 

are two reactions where a mechanistic study would be helpful in understanding 

the reactions better. When secondary hydroxylamines are oxidized, nitrones 

(R2C=N(0)CR2R'), are formed where R' is a hydrogen atom and R can be either a 

hydrogen atom or an alkyl group. Oxoammonium ions are instead formed as 

the product if R and R' are alkyl groups. Both of these products are special in 

their uses. Nitrones can be used as radical trapping agents, allowing a researcher 

to be able to study a short-lived and reactive species on a longer time scale. 

Nitrones are also extensively used in the synthesis of natural products. They 

combine with olefins in a 1,3 dip)olar cydoaddition reaction to yield heteroatomic 

five membered rings that can be converted to a variety of other functionalities. 

Oxoammonium ions on the other hand, are known as strong oxidizing agents 

comparable to bromine. The products from alcohol oxidations are either 

aldehydes or ketones. These two carbonyl compounds have their own specific 

uses and can be reacted further to produce other functionalities. 

Many oxidants have been used to oxidize hydroxylamines and alcohols, 

such as peracids, dioxiranes, and transition metal oxo and peroxo complexes 

under stoichiometric and catalytic conditions. The sources of oxygen for the 

transition metal catalysis are mainly O2, H2O2, alkylperoxides, and PhlO. All of 

these oxygen donors have good and bad qualities. For example O2 is the most 

abundant while H2O2 is more soluble under aqueous conditions than O2 and 

gives only water as a byproduct. The others are not as favored as oxygen donors 

due to the goals of waste management. For this study, H2O2 is used as the oxygen 

source with methyltrioxorhenium(VII), CHsReOs, MTO, as a high valent metal 

catalyst. H2O2 is activated upon coordination to a high valent transition metal. 
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such as MTO. The metal acts as a Lewis add and upon coordination, the 

peroxide becomes less nucleophilic, increasing the susceptibility of the peroxo 

oxygens to nucleophilic attack. 

MTO has been found to activate H2O2 by formation of a bidendate 

monoperoxide, CH3Re(0)2(Ti2-02)/ A, and a bisperoxide, CH3Re(0)(Ti2-02)2(H20), 

B. These compounds will be discussed in detail in the following chapters. For 

this study, conditions were chosen to make B the dominant reactive form of the 

catalyst, although it has been shown before that both A and B can oxidize a 

variety of substrates. A mechanistic study was carried out for both substrates as 

described in Chapters 1-3. For secondary hydroxylamines a mechanism is 

proposed where the lone pair of the nitrogen acts as a nucleophile towards the 

bound peroxo-oxygens and a transfer of an oxygen atom occurs. Depending on 

the hydroxylamine, either water or hydroxide is eliminated from this 

intermediate to yield the nitrone or oxoammonium ion, respectively. For the 

oxidation of alcohols a hydride abstraction mechanism was proposed where the 

peroxo-oxygen abstracts the alpha hydrogen of the alcohol carbon. A portion of 

this mechanism also goes through a step where an oxygen atom is inserted into 

the same C—H bond instead. All reactions were optimized to give products in 

greater than 90% yields. The activation of H2O2 upon coordination to MTO 

speeds the oxidation of substrates by a factor of 50 to 500,000 compared to the 

uncatalyzed reaction. In fact the MTO/H2O2 system is such a strong oxidizing 

system that its rates of oxidation are typically only 50 to 100 times slower than 

those of the strong oxidizing agent Br2. The MTO/H2O2 oxidizing system is also 

be more beneficial from the standpoint of hazardous waste production as 

compared to stoichiometric bromine oxidations. 



www.manaraa.com

4 

Molecular Oxygen Coordination 

The activation of molecular oxygen is a difficult task that not many metal 

centers can accomplish. Cobalt(II), when pentacoordinated, is one such 

compound that can coordinate 02- These CodI) complexes can usually be 

described as antilogous to cobalamin. The Praxair Corporation is investigating the 

uses of such compounds for the coordination of oxygen and its subsequent 

purification on an industrial scale. To have a better understanding of the 

complexes they had synthesized, scientists at Praxair Inc. collaborated with us to 

determine the rates of oxygen coordination for each complex. We were to 

determine these rate constants in solution with hopes of extrapolating to solid 

state conditions, as needed for the ultimate application There are only a few 

methods available at this time to determine these rate constants, one of which is 

laser flash photolysis that has been used extensively at Iowa State. This method 

was applied to this project as well as some new variations. 

Dissertation Organization 

This dissertation consists of four chapters. The first three chapters deal 

with the catalytic oxidation of alcohols and hydroxylamines. Chapters I and HI 

have been submitted for publication in Inorganic Chemistry while Chapter II has 

already been published in the same journal. The last chapter deals with rate 

constant determinations for the binding of molecular oxygen by Co(II) salen 

derivatives. This work was supported by Praxair. Each section is self contained 

with its own equations, tables, figures, and references. Following the last chapter 

are some general conclusions. All the work in this dissertation was performed 

by this author. 
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CHAPTER I 

OXTOATION OF ALCOHOLS BY HYDROGEN PEROXIDE, 

CATALYZED BY METHYLTRIOXORHENIUM (MTO): 

A HYDRIDE ABSTRACTION 

A paper submitted for publication in the journal Inorganic Chemistry. 

Timothy H. Zauche and James H. Espenson 

Abstract: Primary and secondary alcohols are oxidized using hydrogen 

peroxide as an oxygen donor and methyltrioxorhenium (MTO) as a catalyst. The 

methylrhenium bis-peroxide, CH3Re(0)(Ti2-02)2(H20) was the dominant and 

reactive form of the catalyst. Representative rate constants k/L mol'l s'^are 1.02 

X 10"^ for 4-Me-a-methylbenzyl alcohol and 4.9 x 10*5 for 4-Cl-a-methylbenzyl 

alcohol. There was a kinetic isotope effect of 3.2 for the a C-H bond. When sec-

phenethyl alcohol was labeled with 80% of the oxygen was retained in the 

ketone. A mechanism featuring hydride abstraction is proposed which is the 

first time that the H2O2/MTO system is proposed to react in this fashion. Also, a 

co-catalytic set of reaction conditions has been developed on the synthetic scale, 

using bromide and MTO as co-catalysts, which cuts the reaction time to minutes 

instead of hours. 

Introduction 

The selective oxidation of C-H bonds has always been a challenging task. 

Typical of this is the oxidation of alcohols to aldehydes or ketones. Usually only 

the strongest oxidizing agents, such as KMn04, Br2, Mn02, Se02, RUO4, and acid 

dichromate can perform this reaction.^ Only a few of these reagents have been 
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used in a catalytic system; one example is Se02.^ It has recently been shown that 

methyltrioxorhenium (CH3Re03, or MTO) can catalyze reactions of hydrogen 

peroxide (HP) with alcohols.^ 

HP used with a catalytic amount of MTO has been shown to oxidize 

catalytically a variety of substrates besides alcohols, such as sulfides^, alkenes^'^, 

amines^'^, hydroxylamines^, and halides^®'^^. The mechanisms of these 

oxidations follow a general pathway where the substrate acts as a nucleophile 

and attacks an electron-poor peroxorhenium oxygen. 

The previous study of alcohol oxidations by MTO and HP focused on the 

synthetic aspects of the catalytic system.^ We were intrigued by these oxidations 

since the alcohol, unlike other substrates oxidized by MTO and HP, has no center 

of electron density to act as a nucleophile, nor does it have a site to which an 

oxygen atom can be easily transferred. Anticipating a new mechanism of 

oxidation for the catalyst MTO, we undertook a study of the oxidation of alcohols 

by MTO and HP. 

Experimental Section 

Materials. Hydrogen peroxide and HPLC grade solvents were purchased 

from Fisher. Water was purified by distillation and then filtered by a Milli-Q 

water purification system. The various alcohols, ketones, and aldehydes were 

purchased either from Aldrich or Lancaster and used as received. The 10% 

labeled water and MTO were purchased from Aldrich 1-Phenyl ethanol (1,2,2,2 

-D4, 98%) was purchased from Cambridge Isotope Laboratories. The methyl-(l-

phenyDethyl ether was made by a standard literature procedure. 

The products of alcohol oxidation were identified using various methods. 

^H NMR spectra were recorded using a Varian VXR 300 MHz NMR or a Bruker 
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DRX 400 MHz NMR spectrometer, mass spectra were obtained using a Finnigan 

TSQ 700 GC-MS, and the UV-Vis spectra were determined using a Shimadzu 

2501 or 3101 spectrophotometer. 

Kinetics. The experiments were carried out in 20% water-acetonitrile 

containing 0.1 M HCIO4. This solvent mixture was chosen for solubility reasoiis 

and because the kinetics and thermodynamics of the HP/MTO system are known 

under these conditions. The reactions were monitored by the absorbance rise in 

the region of 240-255 nm, due to the formation of the carbonyl product. The 

reactions were carried out in a quartz cuvette under air, since there was no effect 

upon saturating the solutions with air or argon. Because of the large molar 

absorptivities of the products (e ~ 1 x 10^ L cm*^ mol"') and the background from 

hydrogen peroxide and MTO, a 0.01 cm pathlength cell from Spectrocell was used 

throughout the study. Reactant stock solutions were made fresh daily. A typical 

reaction procedure is as follows: 10-50 mM MTO, 200 mM HP and 0.10 M HCIO4 

were mixed together in the cell and allowed to stand for one to two minutes to 

allow the complete formation of the catalytically active form of MTO; 20 - 50 mM 

of neat alcohol was added at this point and the solution mixed thoroughly (~ 25 

sec). Data acquisition was then started and the reaction was kept at a constant 

temperature of 25 °C. The reactions were typically monitored until 1-2% of the 

alcohol had reacted, since over longer periods of time the catalyst is susceptible to 

decomposition. The absorbance versus time data were analyzed by the initial 

rate method. The absorbance traces were converted to concentrations based on 

the molar absorptivities of the alcohols and products determined from authentic 

samples. The data was linear over the time frame used and was fit to a linear 

least-squares analysis using the computer program KaleidaGraph. 
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Oxygen Labeling. An isotope labeling experiment was carried out with 

sec-phenethyl alcohol. The 10% labeled alcohol was synthesized by the standard 

literature preparation^^ from acetophenone mixed with 10% water and a 

catalytic amount of add. After 16 h, the labeled acetophenone was isolated and 

reduced using sodium borohydride. The resulting alcohol was then purified and 

stored in a desiccator. 

In a typical labeling experiment a reaction solution contained 30 mM of 

10% labeled alcohol, 25-30 mM MTO emd ~ 200 mM urea hydrogen peroxide 

(UHP) in acetonitrile. Not all of the UHP was dissolved, but enough was 

dissolved to assure that the dominant form of the catalyst was the bis-

peroxorhenium compound, determined by observation of its characteristic 360 

nm absorption. UHP was used in these experiments to limit the amount of 

bearing water in the reaction solution. 

All of the gas chromatography-mass spectrometry experiments were 

performed using a Finnigan TSQ 700. The system was configured in the electron 

impact ionization mode. The first quadrupole was used as the analyzer to scan 

from m/z 35 to m/z 400 at 0.5 sec/scan. The second and third quadrupoles were 

kept in the RF-only mode. Unit mass resolution was achieved using FC43 as 

calibration and tuning reference. A DB1701 gas column was used for all 

experiments. This allowed the ketone to flow through the column first, and any 

tailing of the larger alcohol peak was not a worry. This was a concern lest tailing 

from the alcohol peak, were it first off the column (as was the case when a DB5 

gas column was used), may overlap with the ketone peak. The ratio of labeled to 

unlabeled compounds was determined by the ratio of mass to charge peaks for 

both the alcohol and ketone with each injection by taking an average of three 

mass spectral scans at the maximum of the GC peak and subtracting a 
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background scan. This allowed direct comparison of the starting alcohol labeling 

and the product ketone, eliminating any variations the instrument might have 

from day to day. Each data point was the average of three injections and each 

reaction was carried out two to three times. 

S)mthetic Scale Reactions. These reactions were carried out on the 2.5 

mmol alcohol scale. A typical procedure is as follows: 4 mol% MTO and 2 eq of 

30% HP were combined. The alcohol was then added and the biphasic mixture 

stirred at 40 ± 2 °C for one day. No add was added, to avoid acid catalyzed by

products. Periodically, the NMR spectrum of an aliquot taken from the organic 

layer was obtained in d-chloroform to monitor the progress of the reaction. 

Other synthetic scale reactions were carried out using Br~ as a co-catalyst 

with MTO. These reactions were performed with an equal volume of 

acetonitrile as compared to HP and alcohol added, which rendered the reaction 

mixture homogeneous. The 1.1 eq. of HP were added by syringe pump infusion 

to limit the amount of peroxide decomposition by bromide species in the 

solution. For these reactions 4.0 mol% of HBr and 0.50 mol% of MTO (relative to 

the alcohol) was used as the catalysts with addition of HP over 30-45 mins. 

Results 

The Catalyst. MTO can reversibly coordinate one or two HPs to yield the 

corresponding mono and bis-peroxorhenium complexes A and B, as shown in 

Scheme 1. Without a substrate present MTO, A, and B will reach equilibrium 

concentrations governed by [HP] and the values of Ki (ki/k-i) and K2 (k2/k-2), the 

equilibrium constants. The same does not hold true during a catalytic reaction 

cycle where steady-state conditions apply. With the oxidation of a substrate at 

rates defined by the second order rate constants ks and k4 and the concentration 
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of substrate, the steady state concentrations of the various rhenium complexes 

will be obtained. 

Scheme 1 

I O Rein"-0 

H3C^ I ^o' 
H20 

xo xo X X 

With such a number of reactions possible it proved difficult to determine the 

steady-state concentration of each rhenium complex during the reaction. For 

example, when the rates of oxidation are larger than the rates of reformation of 

A or B, then after a few catalytic cycles the major form of the catalyst will be 

MTO, with the rate-determining step being the formation of A. On the other 

hand, when the rates of oxidation are slow compared to the formation of A or B, 

then the dominant form of the catalyst during the reaction will be B at high [HP]. 

With alcohols the rate of oxidation is much slower than the rate of reformation 

of the oxidizing species B from A, leading to a well-behaved catalytic system. 

Reaction Kinetics. It has been shown that the initial rate method can be 

applied to catalytic MTO oxidations.^ Owing to the long reaction times for 

alcohol oxidations (typically t\/2 ~ 30 hr) and the slow decomposition of the 

catalyst, the initial rate method was employed. For these reactions MTO and HP 

were equilibrated before addition of the alcohol. With the high concentration of 

HP used (0.2 - 0.3 M), the predominant form of the catalyst will be B in accord 

with the assumption that [B] = [Relj = [MTO] + [A] + [B], which will hold 

throughout the reaction. This treatment allows the determination of the 
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bimolecular rate constant k4 for the reaction of B with an alcohol as written in eq 

1, expressed by the rate law, eq 2, written in terms of initial rates.^^ 

B + R;CHOH ) A + RjCO + H2O (1) 

V, = k, [B][R2CHOH]o = k, [Re]j [RjCHOHJo (2) 

Based on equations 1 and 2 a plot was made of the initial rates versus the 

product [Relj x [R2CHOH]o. According to eq 2 the values of Vi should define a 

straight line that passes through the origin with the slope equal to k4. The data 

for 4-Me-a-methylbenzyl alcohol eire displayed in Figure 1. The least-squares 

slope of the line gives the value k4 = 1.02 x 10"'^ L mol'^s"^ (25 °C, in 20% 

water/acetonitrile, 0.1 M HCIO4). The determined rate constant k4 for each 

alcohol is listed in Table 1. The spread of rate constants is not large, all being 

within a factor of 5. Included in this study was the oxidation of methyl (1-

phenyD-ethyl ether. This compound has the smallest rate constant of all 

compounds determined and is about 3.3 times slower than its resp)ective alcohol, 

sec-phenethyl alcohol, entries 3 and 13. The k4 rate constants could not be 

determined accurately for some alcohols, but these substrates were also listed to 

show the widespread applicability of the MTO/HP oxidations. 

A linear free energy relationship plot was made of the para substituted a-

methylbenzyl alcohols as shown in Figure 2. From this plot the slope p = -0.51 

was determined. The negative p value implies that electron donating groups 

increase the reaction rate, while electron withdrawing groups decrease the rate. 

This agrees well with an oxidation mechanism in which the rhenium peroxo-

oxygen performs an electrophilic attack on the C-H bond. One of the 7 substrates 

used to make the LFER plot did not react as expected. 4-Bromo-a-methylbenzyl 

alcohol has a rate constant that is approximately half of the expected value. The 

alcohol sample was pure by NMR. We have no explanation for this 
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deviation at this time, but would call attention to this also being one of the 

compounds giving a low yield (see later). 

Isotopic Labeling. A number of reactions were performed using 10% 

labeled sec-phenethyl alcohol with GC-MS monitoring. When it was treated 

with MTO/UHP, it was found that 80 ± 5% of the labeled oxygen remains in the 

ketone. UHP was used for these experiments to limit the amount of added 

water, by minimizing oxygen exchange between the ketone and solvent. When 

30% aqueous HP was used there was significant exchange of the labeled ketone 

with the solvent oxygens. Even without added acid, when MTO decomposes it 

forms perrhenic acid which will catalyze exchange. With UHP as the oxygen 

donor there was no detectable exchange of the labeled ketone over 24 h. Multiple 

trials were performed and the reactions were monitored over time to verify that 

the ketone did not exchange its oxygen during the oxidation experiment. A 

deuterium kinetic isotope study was performed using 1-phenyI ethanol (1,1,1,2-

D4). As shown in Table 1, entries 3 and 11, the kn/kp ratio is 3.2. 

Radical Mechanism Possibilities. Another strong oxidizing compound, 

dimethyldioxirane (DMDO) can also oxidize alcohols. The mechanism of C-H 

bond activation by DMDO has been investigated by a number of groups. 

The intermediate in DMDO oxidations can be described as a biradical trapped 

within a solvent cage. Under different conditions the radical nature of this 

intermediate can be exploited. MTO has been compared to DMDO in the past for 

alkene oxidations,^ therefore a radical intermediate for MTO oxidations was 

examined. We first tested whether O2 affects the reaction rates. For reactions 

carried out under an air or argon atmosphere, no difference in the rate of the 

reactions was noted. Another test for radicals was to add freshly distilled 

CBrCb.^^ The reaction rate was not changed when 25 to 50 mM CBrCb was 
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added. (No halogenated product was checked for since such a product would 

rapidly lose HBr to form the ketone.) Other radical trapping agents such as 

Tempo could not be used for this reaction, because the oxidations were 

performed under acidic conditions. From these negative results we conclude 

that radical reactions are not significant in the mechanism of these reactions. 

Phase Transfer Reactions. The slow rates of oxidation for the various 

alcohols reveal the long reaction times required to reach completion. Recently, it 

was reported that the oxidation of alcohols occurs with WO42- and HP under 

"solvent free" conditions.^® That study used neat alcohol and dissolved the 

catalyst in 30% HP while using a phase transfer catalyst (PTC) to assist in 

transportation between the phases. Since MTO is soluble in many organic 

solvents, no PTC would be needed were MTO used under similar reaction 

conditions. 

Synthetic preparations of ketones were carried out on the neat alcohol. 

Typically 2.5 mmol of the alcohol was used with 5 mmol HP as a 30% solution 

and 4 mol% MTO. The reactions were stirred at 40 °C for 1 day and then the 

jaelds were determined by NMR as found in Table 1. As seen in Table 1 many of 

the yields are often better than 80%. This is a great improvement over the 

previous report of alcohol oxidations by MTO/HP (< 30% yield, 19 mol% 

catalyst^). The temperature of 40 ®C was chosen instead of the previously-used 60 

°C, to avoid MTO decomposition at higher temperatures.^^ At 40 °C the 

decomposition of MTO is less, allowing good yields of the product while 

shortening the reaction times. The reactions were monitored for up to 24 h, but 

as seen in the table most of the reactions were almost complete after only 8 h. 

The percent conversion is also listed in the table demonstrating the low amounts 

of byproducts in these reactions. 
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An interesting point is the oxidation of a primary alcohol beyond the 

aldehyde to the carboxylic add. When two equivalents of HP were used to 

oxidize benzyl alcohol, not only Weis benzaldehyde made but a large portion was 

further oxidized to benzoic add (21%). When one equivalent of HP was used, 

the product ratio became 40% benzaldehyde, 7% benzoic acid. Most of the a-

phenyl alcohols were oxidized in good yields in reference to large scale reactions. 

The only two exceptions were the 4-bromo-a-phenylethanol and the 4-methoxy-

a-phenylethanol. The reason for the decreased yield for the 4-bromo could be 

due to the slower rate of reaction then expected as seen in the LFER plot, while 

the 4-methoxy compound gave a number of products that were not 

characterized. The non-a phenyl alcohols varied in amounts of yields from 27% 

for l-phenyl-2-propanol to 92% for 1-cyclohexylethanol. 

Co-catalysts: MTO and Br. Synthetic scale reactions can be made more 

environmentally friendly by limiting the number and types of side products. 

Another goal is for the reactions to be halide-free. We have accomplished this by 

using non-halogenated solvents and non-halogenated oxidizing agents. Now 

that the oxidation of alcohols by MTO/HP has been defined, we have explored 

shortening the reaction time by adding bromide as a co-catalyst. 

Previously, MTO/HP has been shown to oxidize catalytically Br~ to OBr^^ 

which can form Br2 when in the presence of another Br" and H+.^^ It is also 

known that Br2 can oxidize alcohols.^ When HBr was added as a co-catalyst for 

the oxidation of alcohols, the reaction was significantly faster as seen in Figxire 3. 

This figure demonstrates that the uncatalyzed reaction of the alcohol with HP is 

almost non-existent. When MTO (0.5 mole equiv.) is added, the reaction 

becomes faster. However, if HBr is added as well (2 mol%), the reaction is much 
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faster. Also if the reaction is done on a synthetic scale, 99% of the ketone can be 

achieved in just nainutes, instead of hours without HBr. 

There is a competing decomposition of HP by OBr" or Even when 

HP was initially added to 5 times excess over the alcohol, it was necessary to add 

more HP to oxidize all of the alcohol in this co-catalytic system. If the HP was 

added dropwise though, only 10% excess was needed for the reaction to reach 

completion. 

Discussion 

Oxidation Mechanism. As stated earlier the oxidation of alcohols by MTO 

and HP must proceed by a different mechanism then has been determined for 

other substrates such as sulfides, alkenes, and hydroxylamines. All of these 

previous compounds had a center of electron density where an oxygen atom can 

be transferred to. Scheme 2 best describes the oxidation of alcohols by MTO/HP 

based on our observations. This mechanism shows the formation of an 

intermediate in which there are interactions between the peroxorhenium oxygen 

with both the carbon and the hydrogen of the a C-H bond. This is typically how 

an hydride abstraction is depicted, supported by the kinetic isotope effect kn/ko 

of 3.2. The electron-poor oxygen performs an electrophilic attack on the electron 

density of the C-H bond. Based on our observations there is no radical 

intermediate. 

This intermediate can then proceed along two pathways. The major path 

is followed when the C-H bond is severed, after which the carbocation loses a 

proton to produce the ketone. This proton could be lost either to the solvent or 

to the other peroxorhenium oxygen to give a di-hydroxo rhenium product, 

which rapidly eliminates water to give A. The di-hydroxo rhenium species has 
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not been isolated, but is not unreasonable in that MTO oxygens are known to 

exchange with those of water, through a similar di-hydroxo rhenium form.^^ 

This major pathway is further supported by the retention of labeled oxygen in 

the ketone. 

Scheme 2 

H Me.9;0 

"r^.h ^ 
k4 

Me^9;o 

R-^' O 
'R 

Me^9>0 
+ H2O 

O o 

Major 

fast 

Me.9;0 

HO 

Me^9;0 
•r^OH 

H fast 

+ Ha# 

The minor pathway is proposed to account for the 20% of labeled oxygen 

that does not remain in the product and to account for the fact that the methyl-

ether can be oxidized as well. With a rate constant for the ether and the 

respective alcohol within a factor of 4, the mechanism for oxidation of both must 

be somewhat similar. The difference between the major and minor pathway is 

where the di-hydroxy group resides when the intermediate breaks apart. Since 

the active oxidizing form of MTO has capabilities similar to those of DMDO, 

there appear to be similarities between the rhenium center of MTO and the 

carbon center of DMDO. The pathway with the di-hydroxo rhenium product is 

preferred in our mechanism over the carbon gem-diol product, showing that the 

two centers are not truly identical. 

Listed in Table 1 are the substrates oxidized by MTO/HP in this study. A 

LFER plot of the para substituted a-methylbenzyl alcohols demonstrates the 
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effect of electronic variations. If an electron donating group is at the para 

position the reaction becomes faster, and vice versa. This also supports a hydride 

abstraction mechanism. It can also be noticed that steric factors play a role in the 

rate of the reaction based on the difference in yields for the various non-a-

phenyl alcohols. The yields start at 92 % for cyclohexylethanol and decrease with 

additional steric bulk to 27% for l-phenyl-2-butanol. A last point of interest is 

that a primary alcohol is oxidized not only to the aldehyde, but further oxidation 

occurs with excess peroxide to give the carboxylic acid as seen with benzyl 

alcohol. This second oxidation can be limited by the amount of peroxide added. 

Synthetic Considerations. This study has produced a new synthetic scale 

preparation of ketones from alcohols in good yields. The yields are somewhat 

dependent on the starting alcohol, with the majority being above 80%. Further, 

the use of bromide co-catalytst decreased the reaction times by a factor of at least 

1000 with decreased reaction temperatures. We feel that this co-catalytic 

system^^ has great potential. 
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Table 1. Rate Constants and Yields for the Catalytic Oxidation of Alcohols 

Entry Alcohol 105 x k4 % Yield on % 

/L mol'^s'^ ^ Synthetic Scaled Conversion 

1 4-Me-a-methylbenzylalcohol 10.2 84 92 93 

2c 4-MeO-a-methylbenzylalcohol 8.85 - - -

3 sec-phenethyl alcohol 7.7 89 97 98 

4 1 -pheny 1-1 -propanol 6.8 69 92 93 

5 4-F-a-methylbenzylalcohol 6.2 91 99 99 

6 (R)-(+)-2-Methy 1-1 -phenyl-1 - 5.5 64 86 87 

propanol 

7 benzyl alcohol^ 5.3 41 (7)e 40 (12) 54 

28 (21) 16 (38) 55 

8 benzhydrol 5.0 46 48 49 

9 4-Cl-a-methylbenzylalcohol 4.9 84 95 96 

10 4- (C F3 )-a- me thy Ibenzy lal cohol 4.4 60 85 85 

11 1 -phenylethanol-1 ,2,2,2,-D4 2.4 - - -

12 4-Br-a-methylbenzylalcohol 2.3 58 64 64 

13 methyl-(l-phenyl)-ethyl ether 2.3 22 53 53 

14 1 -cyclohexy lethanol 74 92 93 

15 4-phenyl-2-butanol 58 61 64 

16 1 -pheny 1-2-propanol 26 27 30 

^ Determined in 20% Water/Acetonitrile, 0.10 M HCIO4 , at 25 °C. 

^ neat alcohol, 2 mole equivalents HP, 4 moI% MTO, 40 °C. The first column 

is after 8 hours, the second after 24 hours, based on NMR peak integrations. 
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Table 1. continued 

^ 4-MeO gave a number of products, which were not identified; entry 11 was 

not reacted on the synthetic scale due to lack of starting alcohol. 

^ The top entry is with 1 eq of HP, the bottom entry is with 2 eq of HP. 

s the first value refers to yield of benzaldehyde, while the value in ( ) refer to 

the yield of benzoic add. 
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Figure 1. Determination of the rate constant k4 for 4-Me-phenethyl alcohol from 

the linear dependence of initial rate on total rhenium and alcohol 

concentrations. Concentrations: 200 mM H2O2, 36 - 72 mM 4-Me-phenylethanol, 

and 10 - 30 mM MTO in 20% H20/acetonitrile and 0.10 M HCIO4. 
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Figure 2. The linear free energy relationship between the rate constant for the 

oxidation of 4-X-a-methylbenzyI alcohols by MTO and H2O2 and the Hammett a 

constant for Kq is defined as X = H. The deviant X= Br point was left out of 

the p calculation. The p value of -0.51 describes the effect that electron donating 

and withdrawing groups have on the transition state. 
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Figure 3. The increase in absorbance at 240 nm accompanying the buildup of the 

ketone from the reaction of sec-phenethyl alcohol and hydrogen peroxide in 20% 

water-acetonitrile containing 0.10 M HCIO4. Without a catalyst the reaction is 

nonexistent, while adding MTO or HBr and MTO increases the rate of the 

reaction to different extents. 
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CHAPTER n 

KINETICS AND MECHANISM OF THE OXIDATION OF 

SECONDARY HYDROXYLAMINES TO NITRONES WITH 

HYDROGEN PEROXIDE, CATALYZED BY 

METHYLTRIOXORHENIUM (MTO) 

A paper published in Inorganic Chemistry* 

Timothy H. Zauche and James H. Espenson 

Abstract 

Secondary hydroxylamines, (RCH2)2NOH and (R2CH)2NOH, are 

converted to nitrones, RCH2N(0)=CHR and R2CHN(0)=CR2, in >94% yield with 

hydrogen peroxide as an oxygen donor and methylrhenium trioxide (MTO) as a 

catalyst. High concentrations of hydrogen peroxide were used so that the 

methylrhenium diperoxide, CH3Re(0)(ri2-02)2(H20), was the dominant and 

reactive form of the catalyst. Representative rate constants are: k/L mol"l s"^ = 

150 (R = Me), 52 (Et), 13.8 (PrO and 3.33 (PhCH2) no H/D kinetic isotope effect on 

the rate constant for this step. The data are interpreted to infer the intervention 

of an oxygenated intermediate, (RCH2)2N(0)0H, which then rapidly dehydrates 

to yield the nitrone. Two products are formed from unsymmetrical 

hydroxylamines, the ratio of which establishes the reactivities of the 

intermediate towards the competing elimination reactions: (RCH2)(R'CH2)NOH 

-> {(RCH2)(R'CH2)N(0)0H} ^ X RCH2N(0)=CHR' + (1-X) R'CH2N(0)=CHR. 

* Zauche, Timothy H; Espenson, James H. Imrg. Chem. 1997,36, 23,5257. 
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Introduction 

Methylrhenium trioxide (CHsReOa, abbreviated as MTO) has proved to be 

an efficient oxidation catalyst with hydrogen peroxide as the oxygen soiorce. This 

catalyst, first prepared as a minor side product,^ can now be obtained easily.^ The 

scope of the cataljrtic oxidations is quite wide, and a considerable diversity of 

substrates will react.^"^^ Particularly germane to the present studies are the 

reports that MTO catalyzed the oxidation of primary and secondary amines to 

hydroxylamines, nitrosoalkyls, nitroalkyls, and nitrones.^^"^^ The net reactions 

of the hydroxylamine, either as the starting material or prepared in-situ from a 

secondary amine, are given in eq 1, along with the formula of the presumed 

intermediate that represents the result of the transfer of an oxygen atom so 

typical of MTOhydrogen peroxide reactions. Hereinafter, we use one of the two 

generalized formulas for the hydroxylamines, as the other follows easily from it. 

(RCH2)2N0H + H202 ) {(RCH2)2N(0)0H} 

) RCH2N(0)=CHR 

We were attracted to a study of the oxidation of secondary hydroxylamines 

to nitrones by their value as synthetic intermediates, which is important in 

medicinal and natural product chemistry.^®"^'^ Highly functionalized nitrogen 

heterocycles can be synthesized from nitrones and olefins in 1,3-dipolar 

cycloaddition reactions.^'^^ Nitrones are also widely used as radical traps.^^"^^ 

Catalysts other than MTO have been used for the oxidation of amines or 

hydroxylamines to nitrones; Se02 catalyzes the reaction of hydrogen peroxide 

and amines to form nitrones, but the yields are not always high.^^ Tungstate is 

effective as a catalyst only for certain amines.^^'^® Imine oxidation also provides 

nitrones in stoichiometric reactions with permanganate, peroxyacids, and or 

dimethyldioxirane.^^"^^ 
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Since much of the earlier work with MTO has focused on the preparative 

aspects, we have chosen to explore the mechanism of the MTO system. 

There are two principal themes of reaction mechanism we have developed in 

this study, one pertaining to the oxidation step, the other to the dehydration of 

the first-formed intermediate, previously postulated, but without experimental 

proof.^^ 

Experimental Section 

Materials. Certain reagents were purchased: N,N-diethyIhydroxylamine, 

N,N-dimethylhydroxylamine (as a 2 M solution in methanol), N,N-

dibenzylhydroxylamine, several secondary amines, 30% hydrogen peroxide, and 

methylrhenium trioxide (Aldrich); HPLC grade organic solvents (Fisher); 

CD3(CH3)NH (Cambridge Isotopes). N-hydroxypiperidine, di-isopropylamine, N-

ethyl-N-isopropyl-hydroxylamine, and N-tert-butyl-N-benzyl-hydroxylamine 

were prepared according to the literature.'^^ 

N-Benzyl-N-alkyl-hydroxylamines, with alkyl = Me, Et, and Pr^ were 

synthesized by the following procedure based on MTO catalysis. The given amine 

was oxidized with hydrogen peroxide (1 eq) and 4-8% MTO in 50 mL of 

methanol by adding the catalyst slowly until a yellow color persisted, signaling 

an MTO-amine complex and thus indicating that the hydrogen peroxide had 

entirely reacted. At that point 5 mL of satd. aqueous sodium carbonate was added. 

The resulting nitrogen compounds were a mixure owing to competing rates of 

oxidation of the amine and hydroxylamine; they were extracted with 3 x 20 mL 

ether and concentrated by rotary evaporation to 3 mL. The hydroxylamine was 

then separated by column chromatography on silica gel, eluting usually with an 

ethyl acetate-hexane mixture. The pure hydroxylamine was collected in 20-30% 
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yield; the yield undoubtedly could have been improved, but this procedure 

sufficed to prepare high-purity hydroxylamines for the kinetic studies. 

Stock solutions of the hydroxylamine and MTO were made in methanol 

and used within two days. The 30% hydrogen peroxide was standardized 

iodometrically; it was stable for long periods; dilute solutions made from it by 

dilution in methanol were standardized every 3-4 h. 

Kinetics .  These experiments were carried out in methanol by 

spectrophotometry with Shimadzu 2501 and 3101 instruments, monitoring the 

product buildup of alkyl nitrones at 235 nm and aryl nitrones at 295 nm. The 

reactions were carried out in a quartz cuvette in air, since this reaction, like other 

MTO-catalyzed oxidations, showed no effect on changing from an atmosphere of 

argon to one of air or oxygen. Because the molar absorptivities of the nitrones are 

so large, ~4 x 10^ L mol*^ cm*^ (235 nm) and -1.2 x 10^ L mol*^ cm"^ (290 nm), a 

cell of 0.02 cm was usually used to keep the absorbance change within a 

permissible range. Except for two special cases discussed later, the reactions 

reached a final stable absorbance. A typical procedure is the following: MTO and 

hydrogen peroxide were mixed in the reaction cell, and allowed to stand for 4-5 

min until the catalytically active peroxorhenium compounds had formed. The 

hydroxylamine was then added, the solution thoroughly mixed (-20 s), and the 

data acquisition started. In addition to these experiments, some measurements 

were made at 360 nm, where B [= CH3Re(0)(Ti2-02)2(OH2)], has a unique 

absorption band (e ~ 1.2 x ICP L mol*^ cm"^). These measurements allowed us to 

follow the concentration of one of the active forms of the catalyst with time. 

We anticipated a problem might arise from the pH of the medium. If too 

acidic, protonation of the hydroxylamine would reduce its concentration by some 

amount and lower the rate as a consequence. If too basic, catalyst decomposition 
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would set in by several pathways, prominent among them under these 

conditions being the reaction between MTO and Experiments with N,N-

diethylhydroxylamine gave the same rate constant in methanol as when 

buffered by an acetic add-sodium acetate (1.8:1) solution added at ca. 20x the 

concentration of the hydroxylamine, showing that the buffer was not needed. 

Kinetic data. The absorbance-time curves were analyzed by either or both 

of two methods. Certain sets of kinetic data followed first-order kinetics, and the 

rate constant was determined by a nonlinear least-squares fit to the equation 

AbSt = Abs„ + (Abso - Abs„) x e"''' (2) 

More frequently, the initial rate method was used, since the distribution of the 

catalyst among the forms MTO, A [= CH3Re(0)2(Tl2-02)| and B did not remain 

completely constant during the course of the experiment; further discussion of 

this point will be given later. The concentration of the product was calculated 

from the absorbance at each time, with hundreds or thousands of values 

collected in each data file. The equation is 

[Nitronelt = Cj = [(RCH2 >2 NOHIq x (3) 
Abso - AbSoo 

The concentration-time data were then fit to a power series, Ct = mo + mtt + .... + 

mnt", with the program KaleidaGraph. The initial rate, (dC/dt)t=o or Vi is the 

value of mi ^4,45 -j^jg procedure is particularly useful when the catalyst species 

change in proportion to one another during the course of the run, but it is 

somewhat less accurate than the method based on the integrated rate equation. 

Reaction Products. The nitrones were identified by their ^H-NMR spectra 

i n  C D 3 O D .  M a n y  o f  t h e s e  p r o d u c t s  h a v e  b e e n  r e p o r t e d  p r e v i o u s l y , f o r  

some, NMR data were reported in CDCI3. The chemical shifts are collected in the 

Appendix, Table A-1. 
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Hydroxylamines with inequivalent R groups produce two nitrones. Their 

ratio was determined by integrating the NMR signals (cf. tabulated specta in the 

Appendix, Table A-2); triplicate determinations on independent samples were 

made. 

MTO Speciation during the Catalytic Cycles. We refer first to the two 

reactions with hydrogen peroxide, shown in Scheme 1. On their own, MTO, A, 

and B will attain equilibrium concentrations governed by the values of Ki and 

K2, the equilibrium constants for reactions in that scheme, and the peroxide 

concentration. 

The same is not true during a catalytic reaction cycle during which steady-state 

conditions apply. To illustrate this phenomenon, the absorbance was recorded at 

360 nm over the time in which dibenzylhydroxylamine was being converted to 

the nitrone. At this wavelength, B is the only absorbing species; the starting 

material, product, MTO and A do not contribute to the light absorption. As 

shown in Figure 1, [B] falls to some 80% of its starting value (i.e., from the 

equilibrium value, MTO and hydrogen peroxide having been allowed to 

equilibrate before the hydroxylamine was added), and then rises. Then, after 

nitrone forn\ation was complete, [Bl rose to the same concentration it had at the 

start. The reason is simple enough: the steady-state concentration of B and of the 

Results 

Scheme 1 

CHaReQa 

HgO 

B A 
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other rhenium species are governed not only by the rate constants in Scheme 1, 

but also by the rate constant for the reaction of each peroxorhenium compound 

with the hydroxylamine. Analysis of the full time course of the kinetics by 

following the buildup of the nitrone would thus be quite complex, since the 

proportions of A and B did not remain constant. This problem was 

circumvented by the use of initial rates in experiments in which such conditions 

prevailed. 

Reaction Kinetics. It was necessary to show that the two methods for the 

analysis of kinetic data were equivalent. Experiments carried out on EtiNOH 

were analyzed by both methods. Assume that the reaction under the conditions 

chosen (high [H2O2] = 0.2-0.3 M) is dominated by a reaction between B and 

Et2NOH, eq 4, expressed by the rate law, eq 5, written in terms of initial rates 

B + (RCH2)2N0H—A + (RCH2)2N(0)0H (4) 

Vi = k4[B][R2NOH]o s k4[Re]T[R2NOH]o (5) 

in which [B] = [ReJj = [MTO] + [A] + [B] and k4 represents the bimolecular rate 

constant for the indicated reaction. Experiments were then carried out over a 

range of MTO concentrations, 0.07-0.52 mM. In each case vj was evaluated by 

polynomial fitting. The values of Vj were then correlated with the 

concentrations of B and hydroxylamine. We show the result as a plot of v, 

against the product of these concentrations (in this set of experiments, one of the 

concentrations is constant, however). According to eq 5 the values of Vi should 

define a straight line that passes through the origin. The data are shown in 

Figure 2. The least-squares slope of the line gives k4 = 52 ± 1 L mol"^ s"' (25 ®C in 

methanol). 

The method of pseudo-first-order kinetics was then applied to the same 

data. The rate constant so evaluated, designated k^, should be directly 
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proportional to [Rely given this rate law. To allow a presentation of the results of 

this method alongside those of the other, the product x [Et2NOH]o is displayed 

on the y-axis, and the same concentration product on the x-axis. As shown in 

Figiire 2, the plots are coincident within the experimental error. The first-order 

kinetic treatment gives k4 = 51 ± 2 L mol"^ s"^. These findings taken together 

validate both methods of data treatment and the rate law given in eq 5. 

Why are the values of k4 so close, when it was shown (Figure 1 and 

accompanying discussion) for a related reaction that [B] changed over the course 

of the reaction? Two reasons can be cited; first, the decrease in [B]ss is governed 

here by k4 = 52 L mol"^ s"^, different from that for the dibenzylhydroxylamine. 

Figure 1, with k4 = 3.33 L mol"^ s'V More importantly, the convergence of the two 

methods reflects the averaging of the contributions from both peroxorhenium 

complexes. This reaction is given in eq 6. 

A-h(RCH2)2NOH ) MTO + {RCH2)2N(0)0H (6) 

In general, as has been found for many types of substrate, ks is about the same as 

k4, or a factor of 2-3 larger at most. As such, a change in the proportions of A and 

B during the course of the reaction, which is exemplified in Figure 1, will not 

have a large effect on the kinetic analysis. 

Nonetheless, we made it our practice to use preferentially the method of 

initial rates. The rate constants calculated on that basis for the eleven dialkyl 

hydroxylamines are given in Table 1. An example of a product buildup curve is 

given in Figure 3, which depicts the rise in nitrone concentration from the 

reaction of N-ethyl-N-isopropylhydroxylamine. 

In those instances where two nitrones were formed. Entries 6-7, 9, and 11, 

the kinetic data were acquired at a wavelength at which only one of the nitrones 

absorbs. This is critical for the initial rate method. In fact, this work illustrates an 
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important but subtle distinction between a rate and a rate constant. The value of 

ky represents the rate constant for forming all the products, in this case the single 

rate constant leading to the intermediate, irrespective of its partitioning to 

products and of the relative contributions to the absorbance. On the other hand, 

the initial rate from the buildup of one nitrone represents just the rate constant 

leading to that product. The actual value of k4 requires division of vi by 

[RR'NOHlo X [RelT and by F, the fraction formed of the particular nitrone being 

monitored. For these cases, the k4 values summarized in Table 2 were calculated 

by this procedure. Entry 5 in that table constitutes the single exception: the 

absorption bands of the two nitrones were not distinct, and thus the pseudo-first-

order kinetic treatment was needed. 

Products. The nitrones from all the reactions were identified by their 

NMR spectra. These spectra agree with the structure and with literature values, 

where known. This information is given in the Appendix, Table A-2. The 

chemical shifts are consistent with the structures given. The data presented in 

Table 2 shows that in all reactions save two, the yield of nitrone (or nitrone pair, 

considering the asymmetric hydroxylamines) is quantitative. The nitrone from 

the oxidation of dimethylhydroxylamine was formed in an 85% yield, based on 

an in-situ NMR determination. By a similar method, N-benzyl-N-

methylhydroxylamine gave but 55% nitrone. This nitrone, N-methylene-N-

benzylamine-N-oxide, is subject to the hydrolysis reaction shown in eq 7. The 

resulting N-benzylhydroxylamine is subject to further MTO-catalyzed oxidation 

to the oxime.^^ 

PhCH2N(0) = CH2 ) HCHO + PhCH2NHOH ) PhCH = NOH (7) 

Partitioning to the Products. Unsymmetric hydroxylamines give rise to a 

pair of nitrones, since the subsequent elimination reaction can involve the 
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hydrogen on either of the a-carbon atoms. Scheme 2 presents this situation more 

fully. 

R-N *4 9 
„ N-OH + B —  ̂N—Nn 
R'̂  p. OH 

Scheme 2 

K5a f\ p-
\=n: + HjO 

R-

/='^\ +H2O 
R'̂  O" 

The ratio of the two nitrones determined by ^H-NMR affords the ratio of the rate 

constants ksa/ksb, which are clearly Ojecause of the concentration dependences 

that enter the kinetic expression) fast steps following the rate-controlling step. 

For the kinetics analysis, the initial rate of formation of product a is 
... N _k4[RR'NOH][Re]T 

ksa 

which provides the basis for the evaluation of k4 in these cases, as described in 

the preceding section. 

Kinetic Isotope Effects. The rate constants for N-hydroxypiperidine and its 

dio derivative are the same; compare Entries 2 and 3 in Table 2. This is as to be 

exp>ected, given the mechanistic implications of eq 1 and eq 4: the first step is an 

oxygenation process, and the C-H bonds on the a-carbons are not involved. On 

the other hand, there is every reason to anticipate that the second step of the 

reaction, nitrone formation, will exhibit a significant kie, given the 

representation in Scheme 2. The kinetic isotope effect will not show up in the 

kinetics. Thus we prepared (CH3)(CD3)NOH in-situ by the MTO-catalzyed 

oxidation of the the commercially-available amine. The ratio of the resulting 

nitrones could be determined quantitatively from the ^H-NMR spectra, allowing 
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a resolution of the kinetic isotope effect The value kn/ko (the ratio of ks values 

for elimination from a C-H bond relative to a C-D bond) was found to be 2.9 

(Table 2, Entry 12). 

Discussion 

Oxidation Mechanism. Given the many parallels in the kinetic data 

between the present set of data and the oxidation of other substrates in MTO-

catalyzed reactions of hydrogen peroxide, the data suggest that the k4 step 

(reaction 4) is rate-controlling. The mechanism of this reaction is then 

nucleophilic attack of the nitrogen lone pair on one of the four peroxo oxygens of 

B. The peroxide groups have been electrophilically activated by coordination to 

the electropositive +7 rhenium center. We also note that the rate constants for 1-

hydroxypiperidine and its dio derivative are the same, indicating that there is no 

involvement of a proton on the a-carbon in the transition state. This is a telling 

point, in that nitrone formation ultimately requires its elimination. The 

transition state for a nucleophilic process can be depicted like this: 

t 
Q ^ 

O—Re;-"P 
CHa^ |V 

H2O 

.'N' 
HO*' V 

R 

The kinetic trends within the simplest of the series R2NOH must be 

considered. The rate constants for Ri = R2 = Me, Et, Pr', and C-C5H10 are 150, 52, 

14, and 62 L mol"^ s"^, respectively. One wonders at the virtual absence of a 

parallel effect in the case of a seemingly analogous series of R2S compounds, the 

rate constants for which are 2.0 x 10^ (R = Et), 1.6 x 10^ (R = Pr'), and 2.0 x 10'^ (R = 

C5H10) L mol"^ It appears that the trend for the hydroxylamines represents 
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a steric effect. It is not a large trend, of course, the values of at the extremes 

differing by only 14 kj mol"^ along the series. Steric effects would, of course, be 

expected more for trivalent nitrogen than for divalent sulfur. We further note 

that steric effects have been observed for the oxidation of phosphines; to cite but 

one example, note the difference between (p-MeC6H4)3P and (o-MeC6H4)3P, with 

rate cortstants of 9 x lO^and 1.9 x 10^ L mol"^ s"^.® Under the conditions adopted 

for the kinetic experiments the peroxorhenium compound B is dominant, with 

A playing a minor role. Nonetheless, we would anticipate a parallel transition 

state for it which would be more important at lower peroxide concentrations. 

The Hydroxylamine-N-Oxide. The immediate product of the oxygen 

transfer reaction is an intermediate dialkyl-hydroxylamine-N-oxide that has not 

been directly observed. This species is postulated here on grounds of the 

operative O-transfer mechanism, and thus the material that can reasonably be 

obtained from the reaction with B . This intermediate, moreover, can yield the 

nitrone product by a precedented elimination step. Since the product-forming 

step is much more rapid than the initial reaction, it does not contribute directly 

to the rate equation. The nitrone-forming step is shown in Scheme 2. The 

hydroxylamine-N-oxide intermediate was previously postulated in the oxidation 

of secondary amines with hydrogen peroxide catalyzed by selenium dioxide^^ 

and tungstates.^® In neither case, however, was it identified or detected during 

the reaction. 

The Elimination Reaction. In light of data from the literature that give 

a different yield of these products, we examined further the values for Entry 6. As 

noted, the ^H-NMR data gave one nitrone, CH3N(0)=CHPh, in a yield of 48 ± 

7%. By difference, the second nitrone, PhCH2N(0)=CH2, was formed in 52% 

yield. This is the ratio reported in Table 2. Further checking was required. 
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however, in that the literature reported an isolated yield of 70% CH3N(0)=CHPh 

from the MTO-catalyzed reaction of the parent amine with urea-hydrogen 

peroxide (UHP) at 0 °C. We obtained an NMR yield of -40%, the balance being 

the other nitrone. A repeat determination by UV-vis using hydrogen peroxide 

gave the yield as 50 ± 10%. 

Because nitrone formation makes no direct kinetic contribution, this step 

must be explored by indirect means. Kinetic isotope effects have afforded a way of 

examining this mechanism. The reactions of the l-hydroxypiperidine 

derivatives (hio and dio) do not speak to this point; each reacts independently 

(and, as it turns out, at the same rate). A suitable compound was found in 

(CH3)(CD3)NH. Two nitrones were easily detected and determined by their 

NMR spectra. The rate constant ratio is kn/kp = 2.9, for cleavage of a C-H bond 

relative to a C-D bond. 

Different compounds provided other means of exploring the elimination 

reaction. The data in Table 2 show the relative rates of formation of the pairs of 

nitrones that result from the sequence of oxidation and elimination processes. 

Since oxidation is not the determinant of the product ratio, the relative rates of 

elimination can be determined. Moreover, it may be useful to compare the 

relative rates after normalization per a-hydrogen, to correct for statistical effects. 

This, too, is given in Table 2. 

For an E2 elimination mechanism,'^^ the more conjugated and substituted 

product is favored. These factors are manifest in the values recorded, in Table 2, 

although for Entry 9 the two factors are in opposition. The effects do appear to be 

sys temat ic  in  tha t  a  re la t ion  such  as  the  fo l lowing holds  among di f ferent  

compounds 

(8) 
^Bn ^Pr ^Pr 
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For example, ken in this interpretation can be transferred from one compound to 

the next. The relative rate for elimination from a given R group appears to be 

transferable from one compound to another, supporting a common mechanism. 

The gist of the elimination mechanism is that a conjugate base attacks the 

CH proton at almost the same time the conjugate add attacks the OH group. The 

kinetic isotope effect establishes that C-H bond breaking is well advanced in the 

transition state. The conjugate base and acid are most likely H2O and HsO"*", 

although this point remains uncertain. 
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Table 1. Rate Constants for the Catalytic Oxygenation of Hydroxy lamines in 

Methanol at 25.0 °C 

Entry Hydroxylamine k4/L mol"^ s"^ Nitrone (% 

1 N,N-Dimethyl 150 ±6 85 

2 l-Hydroxypiperidine 64±1 99 

3 dio-1-Hydroxypiperidine 63 ±2 99 

4 N,N-Diethyl 52 ± 1 97 

5 N-Ethyl-N-isopropyl 35.4 ± 0.6b 98 

6 N-Benzyl-N-methyl 26 ±4 55 c 

7 N-Benzy 1-N-ethy I 15.8 ± 0.3 95 

8 N,N-Di-isopropyl 13.8 ±0.6 94 

9 N-Benzyl-N-isopropyl 7.0 ± 0.2 98 

10 N,N-dibenzyl 3.33 ± 0.05 99 

11 N-Benzyl-N-tert-butyl 0.94 ± 0.05 99 

^ Based on NMR peak integrations; ^ Determined from fit to first-order kinetics; ^ 

The low yield is a consequence of subsequent nitrone decomposition (see text). 
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Table 2. Ratio of Nitrone Products From Asymmetric Hydroxylamines 

Entry Hydroxylamine Major Nitrone Minor Nitrone Ratio = Normalized 

ksa/ksb ratio^ 

5 ^-OH VN;:° 
CHMe2 Me^ ^Et 

6.0 3.0 

6 
Ph-  ̂

^N-OH 
H' ^HaPh H Me 

-1.1 -O.Tb 

7 
Ph-x 

^N-OH 
Me, p' 

H'C"'̂ "^CH2Ph 

z
 II 

A
 1.6 1.6 

9 
Ph-  ̂

N-OH H^C-NvcHMeg 

Me< 

Mer" '̂ ^CHaPh 
4.4 2.2 

12 
Daq 

N-OH 
H3C 

Hs +0" 

cr ^^ch3 
2.9 2.9 

^ Normalized based on the number of available protons; ^ This number is 

imprecise since N-oxide-N-benzylmethyleneamine decomposes under these 

conditions. 
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Figure 1. A recording of the concentration of B, the catalytically-active 

methylrhenium diperoxide, during the course of the oxidation of 

dibenzylhydroxylamine. B, the only species in the solution that absorbs at 360 

nm, drops to ca. 80% of its initial value during the reaction and is fully restored 

at the end. Concentrations: 0.98 mM (PhCH2)2NOH, 200 mM H2O2, 0.87 mM 

MTO. 
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Figxire 2. A comparison of two methods (initial rates, filled symbols, and pseudo-

first-order kinetics) for the evaluation of the kinetic data for the reaction of 

EtzNOH (0.928 mM) and H2O2 (0.20-0.30 M) catalyzed by MTO (0.07-0.52 mM). 

The solutions also contained HOAc (12.1 mM) and NaOAc (8.3 mM). 
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Figure 3. The increase in absorbance at 230 nm accompanying the buildup of the 

nitrone from the reaction of N-ethyl-N-isopropyl-hydroxylamine and hydrogen 

peroxide in methanol at 25 °C. Concentrations were 0.20 M H2O2, 2.03 mM 

R2NOH, and 1.32 mM MTO. The reaction kinetics as shown occur in a single 

stage; the later partitioning to two nitrones takes place quite rapidly (see text). 
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APPENDIX- NMR CHEMICAL SHIFTS FOR SELECTED COMPOUNDS 

Table A-1: ^H-NMR chemical shifts in CD3OD 

Dialkylhydroxylamines S, rel to Me4Si 

Me2NOH 

Et2NOH 

Pri2NOH 

(PhCH2)2NOH 

C-C5H10NOH 

(Et)Pr'NOH 

(PhCH2)MeNOH 

(PhCH2)EtNOH 

(PhCH2)Pr'NOH 

(PhCH2)ButNOH 

C-C5D9NOH 

3.175 (s, 6H) 

2.66 (broad q, 4H, J 7.2 Hz), 1.13 (t, 6H, J 7.2 Hz) 

3.06 (hept, 2H, J 6.4 Hz), 1.08 (d, 12H, J 6.4 Hz) 

7.37 (m, 4H), 7.30 (m, 4H), 7.23 (m, 2H), 3.86 (s, 4H) 

3.20 (m, 2H), 2.39 (m, 2H), 1.73 (m, 2H), 1.59 (m, 

3H), 1.16 (m, IH) 

2.081 (hept, IH, J 6.4Hz), 2.67 (broad q, 2H, 7.2 Hz) 

1.11 (t, 3H, J 7.2 Hz), 1.06 (d, 6H, J 6.4 Hz) 

7.33 (m, 5H), 3.76 (s, 2H), 2.61 (s, 3H) 

7.30 (m, 5H), 3.78 (s, 2H), 2.72 (broad q, 2H, J 7.2 Hz) 

1.15 (t,3H,J7.2 Hz) 

7.3 (m, 5H), 3.81 (s, 2H), 2.95 (hept, IH J 6.3 Hz), 

1.16(d,6HJ6.3 Hz) 

7.36 (m, 2H), 7.27 (m, 2H), 7.18 (m ,1H), 3.76 (s, 2H), 

1.18 (s, 9H) 

2D spectrum (rel to CH2DOH = 3.069 ppm): 

2.88 (s, 2H), 2.07 (s, 2H), 1.40 (s, 2H), 1.23 (s, 3H), 

0.83 (s, IH) 
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Table A-2. ^H-NMR spectra for nitrones 

Nitrone 5 (rel to Me4Si) in CD3OD Literature in^CpCls 

H2C=N(0)Me 

MeCH=N(0)Et 

Me2C=N(0)Pr' 

PhCH=N(0)CH2Ph 

C-C5H9NO 

MeCH=N(0)Pri 

Me2C=N(0)Et 

PhCH=N(0)Me 

H2C=N(0)CH2Ph 

6-74 (s, IH, J 7.2 Hz), 6.63 (s, IH, 

J 7.2 Hz), 3.74 (s, 3H) 

7.29 (q, IH, J 6.0 Hz), 3.86 (broad 

q, 2H, J 7.2 Hz), 2.004 (d, 3H, J 

6.0 Hz), 1.42 (t, 3H, J 7.2 Hz) 

4.63 (hept, IH, J 6.4 Hz), 2.22 (s, 

3H), 2.15 (s, 3H), 1.31 (d, 6H, J = 

6.4 Hz) 

8.24 (m, 2H), 8.04 (s, IH), 7.40 

(m, 8H), 5.12 (s, 2H) 

7.36 (s, IH), 3.75 (s, 2H), 2.51 

(m, 2H), 1.99 (m, 2H) 1.73 (m, 

2H) 

7.29 (q, IH, J 5.6 Hz), 4.19 (hept, 

IH, J 6.4 Hz), 1.98 (d, 3H, J 5.6 

Hz), 1.37 (d, 6H,J6.4 Hz) 

3.92 (broad q, 2H, 7.2 Hz), 2.21 

(s, 3H), 2.15 (s, 3H), 1.407 (t, 3H, 

J 7.2 Hz) 

8.25 (m, 2H), 7.84 (s, IH), 7.40 

(m, 3H), 3.87 (s, 3H), 

7.40 (m, 5H), 6.86 (d, IH, J 6.8 

Hz), 6.66 (d, IH, J 6.8 Hz), 5.00 

(s, 2H) 

This material was independently 

synthesized [Ref 3] 

6.9 (q, IH, J 6.0 Hz), 3.8 (broad q, 

2H, J 7.2 Hz), 1.9 (d, 3H, J 6.0 

Hz), 1.4 (t, 3H, J 7.2 Hz) [Ref 1] 

4.47 (hept, IH, J 6.5 Hz), 2.14 (s, 

6H), 1.37 (d, 6H,J = 6.5 Hz) 

[Ref 2] 

8.17-8.25 (m, 2H), 7.36-7.51 (m, 

9H), 5.06 (s, 2H) [Refl] 

7.15-7.25 (m, IH), 3.75-3.85 (m, 

2H), 2.4-2.5 (m, 2H), 1.9-2.1 (m, 

2H) 1.6-1.8 (m,2H) [Ref 2] 

8.22 (dd, 2H), 7.39 (dd, 4H), 3.81 

(s,3H) [Refl] 
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8.05-8.4 (m, 2H), 7.48 (s, IH), 

7.2-7.56 (m, 3H), 1.58 (s, 9H) 

[Ref2] 

Table A-2 cont. 

PhCH=N(0)Et 8.26 (m, 2H), 7.89 (s, IH), 7.4 

(m, 3H), 4.03 (broad q, 2H, J 7.2 

Hz),1.53(t,3HJ7.2 Hz) 

MeCH=N(0)CH2Ph 7.4 (m, 6H), 4.96 (s, 2H), 2.01 (d, 

3H, J 6 Hz) 

PhCH=N(0)Pr' 8.27 (m, 2H), 7.90 (s, IH), 7.46 

(m, 3H), 4.37 (hept, IH J 6.4 

Hz), 1.46 (d, 6HJ6.4 Hz) 

Me2C=N(0)CH2Ph 7.4 (m, 5H), 5.12 (s, 2H), 2.27 (s, 

3H), 2.19 (s, 3H) 

8.32 (m, 2H), 7.92 (s, IH), 7.48 

(m, 3H), 1.61 (s, 9H) 

spectrum (rel to CH2DOH = 3.069 ppm): 

7.10 (s, IH), 3.42 (s, 2H), 2.12 (s, 2H), 1.64 (s, 

2H), 1.37 (s, 2H) 
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CHAPTER in 
TEMPO AND MTO AS CO-CATALYSTS FOR THE OXIDATION OF 

ALCOHOLS BY HYDROGEN PEROXIDE 

A paper submitted for publication in the journal Inorganic Chemistry 

Timothy H. Zauche and James H. Espenson 

Abstract 

The reactions of the oxammonium ion 4-hydroxy-2,2,66-

tetramethylpiperidinium N-oxide, 4-hydroxy-Tempo, abbreviated R2NO''", have 

been studied. The previously unreported triflate salt was used, because Cl~ and 

Br" can themselves be oxidized and must be avoided in the part of the research 

that involves methyltrioxotrhenium, MTO, and H202- Reactions with R2NO+ 

convert alcohols to their carbonyl compounds; the rate constant for PhCH20H is 

4.4 X 10"^ L mol'^ s"^ in acetonitrile at 298 K. The immediate product is the 

hydroxylamine, R2NOH, but its further comproportionation reaction with 

R2NO''" yields the stable piperidinyl oxyl radical, R2NO*. The rate constant of this 

reaction is 1.78 x ICP L mol"^ s"^ at 298 K. 

Introduction 

Oxammonium ions, such as 4-hydroxy-2,2,66-tetramethylpiperidinium N-

oxide, R2NO"'" in Chart 1, are strong oxidizing agents. Alcohols are oxidized by 

R2NO"'' stoichiometrically and catalytically, both electrochemically^'^ and with a 

variety of reagents such as HOCl,^"^ MCPBA,^ and Cu(II).^ Secondary alcohols 

react preferentially over primaries, possibly for steric reasons.^'® During most 

oxidations R2NO"*" is converted to R2NOH without an intermediate piperidinyl 

oxyl radical, R2NO'. The comproportionation equilibrium, R2NOH + R2NO+= 
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ZRiNO" + H+, favors the radical; thus after the initial stage of the reaction 

R2NO' predominates. 

Chart! 

1 = RaNO-^ 2 = RaNO* 3 = RgNOH 

Hydrogen peroxide oxidizes secondary hydroxylamines to nitrones when 

methyltrioxorhenium (CHsReOs, abbreviated as MTO)^ or Na2W04^^ is used as 

catalyst. a-Tetrasubstituted amines are converted to N-oxyl radicals with MTO-

H202,^^ perhaps by the same mechanism (Scheme 1). Alcohols are oxidized with 

MT0-H202,^^'^^ albeit very slowly. We have examined the possibility, using 

alcohol reactions as the test case, that R2NO+ might act in concert with MTO to 

promote certain oxidations. 
Scheme 1 

B 

hô -̂OH W "U 
H20 

HO-/ 

hydroxylamine oxoammonium ion 

Experimental Section 

Some reagents were purchased: TEMPO, 4-hydroxy-TEMPO, MTO, 30% 

H2O2, AgCFaSOa and HPLC-grade organic solvents. 2,2,6,6-Tetramethyl-

piperidine-l,4-diol and 2,2,6,6-tetramethyl-l-oxo-piperidinium chloride were 

prepared according to the literature procedures.They were stored under 

nitrogen because they are sensitive to moisture and oxygen.Chloride salts 

cannot be used since hypochlorite formation must be avoided. Silver salts 
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have been used to oxidize R2NO*, but no product has been isolated. 4-Hydroxy-

2,2,6,6-tetramethyl-l-oxo-piperidinium triflate, previously unreported, was 

prepared by stirring 0.55 mmol silver triflate in 4 mL nitromethane with 0.50 

mmol 4-hydroxy-TEMPO. Metallic silver formed within minutes; it was 

removed and 25 mL ether was added to obtain a yellow solid in 84% yield. Anal.: 

Calcd. for C10H18NSO5F3: C, 37.38; N, 4.36; H, 5.65; Found: C, 37.44, N, 4.33, H, 

5.67. 

Kinetics studies were carried out in acetonitrile without an added Lewis 

base, once it had been confirmed that 2,6-lutidine had no effect on the rate. 

Conditions were selected to minimize the amount of protons released during 

any reaction, owing to the involvement of side reactions that will be discussed. 

Results and Interpretation 

Several steps to consider are these: 

MTO + H2O2 = A + H2O (1) 

A + H2O2 = B (2) 

B + R2NOH ^ A + R2NO+ + OH- (3) 

R2NO+ + R2CHOH -4 R2NOH + R2CO + H+ (4) 

In solutions of MTO containing hydrogen peroxide, the two 

peroxorhenium complexes were formed in equilibrium, A [MeRe(0)2(h2-02)] 

and B [MeRe(0)('n2-02)2(H20)], as given in reactions 1 and 2. Reaction 3 was 

monitored at 240 nm by the buildup of R2NO*, e = 1.85 x 10^ L mol"^ cm"^. This 

radical resulted from the rapid comproportionation reaction between R2NO''" and 

R2NOH. The concentrations employed were 0.6-3.0 mM MTO, 200 mM H2O2, 

and 0.7-2.0 mM R2NOH. Since B was rapidly regenerated under these conditions, 

pseudo-first-order conditions applied. The rate constant is k3 = 3.0 L mol'^ s"^ in 
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acetonitrile at 298 K. In comparison, the closely-related reaction of B with N-

benzyl-N-Bu'hydroxylamine has ka = 0.94 L moH s'^ in methanol at 298 K.^ 

Based on the similarity of these values, we infer that the two reactions represent 

the same chemistry. 

Rate constants for reaction 4 have not been reported hitherto. The buildup 

of benzaldehyde was monitored at 244 nm, with 1-5 mM R2NO"'" and 60-200 mM 

PhCH20H. These measurements afforded k4 = 4.4 x lO*^ L mol"^ s"^ in acetonitrile 

at 298K. The reaction stoichiometry was 2R2NO''":lPhCH20H, evidence for the 

rapid comproportionation reaction of R2NO'^ with R2NOH, reaction 5. 

R2NO+ + R2NOH ^ 2R2NO* + H+ (5) 

The kinetics of the reaction of R2NO''" with R2NOH was monitored by 

stopped-flow and conventional UV-Vis methods. The initial conditions were 18-

32 nM R2NO+, 46-416 pM R2NOH. A few of these experiments were carried out 

under pseudo-first-order conditions. These data were fit to the form for mixed-

second-order kinetics, eq 6 in terms of concentration and eq 7 in terms of 

absorbance. 

[RaNO"' li = [R2NO"' 1X (6) 

Absj = Abs„ + (R-^)x(Abso-Abs,^) 
'  R x e ' ^ ' - l  

where R = [R2NOH]o/[R2NO"^]o and the rate constant k* = ks x A, with A = 

[R2NOH]O - [R2NO+]O. 

The plot of k against A is depicted in Figure 1; its slope gave k5 = (1.78 ± 

0.05) x 10^ L mol'l s"^ in acetonitrile at 298 K. The position of the equilibrium in 

eq 5 can be shifted by protonation of the hydroxylamine, R2NHOH+ = R2NOH + 

H+, but doing so provides no advantage here since the protonated 

hydroxylammonium ion does not react with B.^ The low reactivity of R2NHOH+ 
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seems general, which is the reason that catalytic R2NO"'" oxidations are generally 

performed under neutral or basic conditions. 

With these values and estimates at hand, the construction of the catalytic 

cycle was possible. Scheme 2 presents an analysis of the transformations 

occurring. For sake of simplicity, steps interconverting MTO and A are not 

shown. At the outset the oxidation of PhCH20H by B is negligible relative to its 

oxidation by the oxammonium ion. The cycle cannot be sustained for long, 

however, because of the rapid comproportionation reaction. These experiments 

were run without added H"**, so that the equilibrium in eq 5 would lie well to the 

right. To limit the occurrence of reaction 5, which limits the effectiveness of a 

catalytic mechanism, [MTO] was increased to 40 mM and [R2NO+]o decreased to 

0.1 mM. Aldehyde formation was detected, but it arises mainly from the reaction 

of B, not R2NO+, with PhCH20H. 

Scheme 2 
PhCHaOH H2O2 

A 

PhCHO 

R2NOH. ks 
R2NHOHW R2NOH RgNO^ —• 2 R2NO + 

k4 

PhCHO + H* ^ PhCH20H 

It can be recognized that the comproportionation reaction limits the 

catalytic applicability of this scheme. It is widely recognized that C10~ is a 2e 

oxidizing agent. Hypochlorite oxidations succeed, and it appears that under these 

conditions the MTO-TEMPO co-catalysts are relatively ineffective. It was difficult 

to sustain the oxidation of alcohol by R2NO"'" since is being more rapidly 

consumed in reaction 5. Note that the equilibrium in reaction 5 could be made 

reversible at higher [H+J. With that, the oxyl radical would be an intermediate 
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not a dead end. Conditions of high (H+] are, however, incompatible with the 

need for R2NOH, not the nonreactive R2NHOH+. 
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Figure 1. The kinetic analysis of the data for reaction 5 in acetonitrile at 298 K. 

The values of k*, obtained from eq 7, are shown here as a plot of k* vs. A, the 

difference in the initial concentrations of the reactants; the slope of this plot is ks-
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CHAPTER IV 

OXYGEN-SELECTIVE SORBENTS 

Introduction 

During the preceding two years our group at the Ames Laboratory, Iowa 

State University has had a research partnership with the Praxair Corporation. 

This undertaking was centered on various kinetics experiments for the reactions 

of selected Co(salen) derivatives with molecular oxygen. This chapter 

summarizes the goals of the project, how these goals were to be achieved, and 

the results that were obtained during the study. 

Five compoimds were received from Praxair. The ultimate goal was to 

obtain the "solvent free" rates of oxygen binding and dissociation for these cobalt 

complexes. The kinetics were to be determined in solution and then extrapolated 

to solvent-free conditions since Praxair uses these compound in the non-

solvated form. 

The methods for determining the rapid rate of molecular oxygen binding 

to cobalt complexes are few in number. The binding of Lewis bases (B, in eq 1-2) is 

an important consideration.^ Many determinations have been made of the 

equilibrium constant relating the oxygenated to the non-oxygenated cobalt 

complex, Kox/^ defined as the ratio of kon/koff as described in eq 3. This has been 

demonstrated the most effectively by Martell et al.^'^ Kqx was determined by 

monitoring the change in barometric pressure, quantifying the amount of 

oxygen absorbed by the cobalt complexes. The product of this coordination is a 

Co(III)02*, shown here as a superoxo radical. Equation 4 describes the formation 

of a n-p>eroxo bridging two Co(in) atoms. 
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Co(L) +B , ^ - Co(L)B (I) 

Co(L)B +B ^ ^ ^ Co(L)B2 (2) 

Co(L)B + O2 02-Co(L)B (3) 

02-Co(L)B +CO(L)B ^-02-[CO(L)B]2 (4) 

It is more difficult to determine the actual rate constants of equations 3, 

binding (kon) and dissociation (koff) . One method entails the use of 

polarographic techniques where the rates are determined by the change in redox 

potentials.^ This method works well for rate constants in the range of 

Lmol'^s'^. Certain rate constants can be obtained by using a standard stopped-

flow instrument, which is valid for rate constants up to lO'^-lO^Lmol'^s*^.^ The 

temperature jump technique has been applied to determine several rate 

constants of eq 3, including those for a few biological derivatives.^'® These 

techniques and corresponding conditions are summarized in Table 1. Recently 

Busch et al. used a cryogenic stopped-flow apparatus to slow the reactions down 

to an observable rate. They then extrapolated these rate constants back to room 

temperature, a procedure not without its problems given the minimal range of 

experimental temperatures.^"^ ̂  All of these techniques except polarography use 

UV-Vis to monitor the reaction. 

At Ames Laboratory the laser flash-photolysis, LFP, method has been used 

before to determine kon and koff for Co (cyclam).^^'^^ The LFP method has been 

employed for these studies, for which a few requirements must be met. The Co-

O2 bond must dissociate upon photolysis. There also needs to be a corresponding 

absorbance change. One concern is the ratio of kon*[02] and koff. This ratio 

cannot be too small other wise only the koff term can be determined by this 

method. One last requirement, which holds true here as well for the other 
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techniques, is that the cobalt complex cannot be entirely in the n-peroxo dimer 

form. There must be some C0-O2 present in solution to photodissodate, because 

the peroxo dimer does not photodissodate. 

Results and Discussion 

The compounds that were explored in this study are shown in Figure 1.. 

At room temperature the Co(saltmen) derivative is converted only to a minor 

extent to its oxygenated form. This was determined by cooling an oxygenated 

solution to —40°C whereupon a large spectral change accompanying oxygen 

binding was seen, Figxire 2. At room temperatiu-e, no change in equilibrium was 

observed upon photolysis. This compound was not explored further at that 

time. Co(malophen) was found to be more fruitful. The compound was 

photolyzable in LFP experiments, and gave rise to rate constants that were 

presumably koff, since the rates of reaction were independent of oxygen 

concentration. 

At this time in the study we received from Praxair two additional 

compounds, IC-1 and IC-2, Figure 1. The structure of IC-2 shows an internal 

base that might bind via a second IC-2, eliminating the need for added base. The 

first study was to determine the Kb for IC-2 with another IC-2 acting as the base. 

Using a program called Specfit and the corresponding UV-Vis data, Kb was 

determined to be 2x10^ L mol'^, calculated with the assumption that only the 

monomer and dimer were present in the solution. Praxair [N. Stephenson] was 

having experiments carried out to verify this assumption. After the bonding 

studies were complete, the LFP experiments followed. Unfortunately though, 

photodissodation of the C0-O2 bond was not observable for either IC-2 or IC-1. 
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This approach suggested a need for the carbon analog to IC-2, coined IC-C, 

Figtirc 1. During the investigation of IC-C, it was found that a similar change in 

the UV-Vis spectrum occurs for IC-C upon addition of oxygen, with or without 

added base (pyr). This finding remains unexplained at this time. Some 

temperature variations were performed on IC-C, but little or no change in 

absorbance occurred with changes in temperature. 

The next logical step was to perform EPR experiments to determine the 

amount of C0-O2 adduct present in solution. The experiments were 

performed with 1.2 mM IC-2 or IC-C in toluene with 250 mM pyridine added to 

the IC-C solution. The solutions were saturated with either Ar or O2. The 

spectra were obtained at 125 K with 8 scans per spectrum. Figure 3. As seen by the 

spectra for both species, there is an 80-90% loss in signal upon addition of 

molecular oxygen. This change in signal intensity was unexpected. The 

experiment also did not show the typical electronic splitting for a "superoxo" 

centered radical.This may have been due to the lone electron being 

delocalized throughout the Schiff base ligand. With the large amount of 

conjugated 7t-bonding, the 7t* orbital may now be accessible to the radical 

electron. Another possibility could be that the |j.-peroxo dimer is the dominant 

form in solution explaining the large loss of signal. 

Little success has been realized in the determination of the kon and koff 

rate constants for the cobalt Schiff base complexes in this study. This led us to 

explore an alternative method for LFP based on the well-established photolysis of 

Co(III)-R complexes.This type of cobalt alkyl bonds can be 

photodissociated.^^ Often, such studies have been performed in order to transfer 

the alkyl group to another compound with prolonged, low-intensity 
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photolysis.^® Our working model has the Co-C bond homolytically cleaved, 

following which the Co(n) complex reacts with oxygen. 

We tested this method with isoPr-Co(ni)salen(pyr). Under anaerobic 

conditions the alkyl radical will dissociate and then reform the parent Co-alkyl 

species. When oxygen is present the alkyl radical combines with oxygen to make 

an alkylperoxyl radical that then recombines with Co(II) rather than molecular 

oxygen. To counteract this reaction, so as to divert the radical in the desired 

direction, a radical trapping agent (e.g., TEMPO) was added.^^ A summary of 

known rate constants pertinent to this study are shown in equations 5-10.^®"^^ 

Co(II)salen + O2 ^ 02--Co(III)salen = 5-7 x 10^ M's ' (5) 
Co(II)L + ROQ. ^ ROO-Co(III)L k = 2 x 10^ (6) 
Co(II)L + R- ^ LCo(III)-R k = ~10''-10^ (7) 

R» + R» R-R k = ~10'° (8) 

R- + O2 ^ ROO« k=I-5(xlO^) (9) 
TEMPO + R* trapped product k = 1 x 10^ (10) 

It has long been known that TEMPO is a good trapping agent for alkyl 

radicals, but not for peroxyl radicals. With this is mind, the reaction conditions 

(concentrations) were chosen such that the alkyl radical would react with TEMPO 

and not O2 (eqns 9 & 10). This meant that since the rate constants for these two 

reactions are similar, the TEMPO concentration was increased to around 20 mM 

and the O2 concentration was decreased to ~1 mM. Under these conditions the 

LFP experiment was performed. The initial bleaching was observed, but no 

further reaction could be monitored. Figure 4. Most probably, the change in 

absorbance due to the formation of C0-O2 was so low that the reaction could not 

be observed. 

In consultation with Dr. N. Stephenson, we asked if they could make the 

alkylated analogs to IC-2 and IC-C. We were optimistic that with these 
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compounds the change in absorbance would be great enough to monitor the 

reaction of CodI) with 02- We then performed kinetic simulations of these 

reactions based on the rate constants for similar compounds. If the kon term is 

greater than 1x10^ L mol"^ s"^, a radical trap will not have to be added. The 

molecular oxygen will coordinate faster than the peroxy radical based on 

concentration differences. 

We were, however, notified by Dr. Stephenson that the Praxair group was 

having some difficulty in synthesizing the alkylated analog. We then proceeded 

to try the synthesis on our own with the limited amount of IC-2 in hand. I first 

synthesized the similar cobalt complexes, Co(salen) and Co(salophen), to 

familiarize myself with the synthetic procedures. I then alkylated the Co(salen) 

with isopropyl bromide. After the completion of this synthesis, the alkylation of 

IC-2 was performed. This experiment was unsuccessful in alkylating the Co(II), 

giving instead the Br-Co(III) derivative of IC-2. After this first trial insufficient 

IC-2 remained for additional synthetic preparation at the Ames Laboratory. 

Conclusion 

We have studied five different Co(II) complexes, with the ultimate goal of 

determining the rate constants for these compounds. Many interesting 

characteristics of these compounds have been found along the way. One worth 

mentioning is the disappearance of the EPR signal upon addition of molecular 

oxygen. Another is the fact that IC-C, a compound with no known Lewis base 

abilities has similar characteristics of oxygen coordination with or without added 

base. Similar observations of 4-coordinate cobalt complexes binding oxygen have 

been reported in the literature, but these are the exceptions. By incorporation of 

a radical trapping agent into the photolysis of Co(III) alkyls, small amounts of 



www.manaraa.com

63 

Co(n) can be made in the presence of 02. With sufficient difference in UV-Vis 

spectra, the rate of formation of Co(in)-02* should be observable. The radical 

trapping agent will only be need when the rates of reactions 5, 6, and 7 are 

comparable. 
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Table 1. A summary of cobalt-oxygen binding and dissociation rate constants. 

Co-complex Solvent Base Temp k o n  koff Method Ref 

Salen py py 0 5.7x105 36 pol 5 

Sal(+)pn py py 0 7.0x103 1.7 pol ti tf 

Sal(+)bn py py 0 320 0.13 pol tt tt 

Sal(+)bn py py 0 760 0.24 pol ti «i 

Sal(-)chxn py py 0 6.2x103 27 pol tt tt 

Sal(m)chxn py py 0 

0
 

1—
I 

V <1.1 pol ti It 

Protoporphyrin Tol Melm 23 2.8x10-4 33 

" (2-MeIm) DMF -5 >4X104 TJ 

[14]aneN4 H2O H2O 25 1.2X107 63 FP 15 

meso- H2O H2O 25 5X106 1.7x 104 FP If *f 

Me6[14laneN4 

(CsCyc) Me2CO Melm 25 2.0 xI06 l.lxl04 cryo SF 11 

(CsCyc) MeCN Melm 25 3.7 xl06 9.2X103 II It 

(CsCyc) MeOH Melm 25 2.4 xl06 1.6X104 .. 

(CsCyc) Me2CO py 25 2.3 xl06 1.0xl05 

(C4Cyc) Me2CO Melm 25 5.4 xl04 3.6X105 

(CeCyc) Me2CO Melm 25 ~1 xl08 II tf 

Co-Mb H2O 25 4.7X107 2X103 TJ 7 
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Figure I. Cobalt complexes 
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Figure 2. A display of the oxygen binding dependence of Co(II) saltmen on 

temperature. The -40 °C solution was chilled using an acetone/dry ice bath. As 

seen be the spectra there is little coordination of oxygen at room temperature 

while at lower temperatures the binding increases. There was no further 

absorbance change at temperatures lower than 40 °C. 
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Figxire 3. EPR spectra of Co(n) complexes v/ith and v^ithout 02- The upper 

figure is for IC-2 while the lower is for IC-C. Both figures demonstrate 

the loss of signal upon addition of oxygen. 
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Figure 4. Laser Flash Photolysis of isoPr-Co(salen)(pyr) with and without Tempo. 

The upper figure shows the growth of the Co-alkylperoxide. The lower figure 

shows that with the addition of a radical trap, there is almost no Co-

alkylperoxide formation. 
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GENERAL CONCLUSIONS 

MTO and hydrogen peroxide continue to be a great asset in the oxidation 

of organic compounds. The types of reactions that this combination can achieve 

have now been expanded to hydride abstraction reactions as well as to further 

oxygen transfer reactions. The oxidation of alcohols proceeds mainly by a 

hydride abstraction from the alpha carbon. Following the oxidation of primary 

alcohols, further oxidation of the aldehyde to organic acids proceeds if excess 

H2O2 is present. 

The oxidation of secondary hydroxylamines yields nitrones or 

oxoammonium ions. In methanol these reactions take place by nucleophilic 

attack of the nitrogen lone pair on the electron-poor peroxo-oxygen coordinated 

to the rhenium center. The proposed intermediate with the oxygen transferred 

to the nitrogen is supported by various isotopic labeling experiments. 

Subsequent rapid loss of water or hydroxide yield the two types of products in 

excellent yields. 

Oxidation reactions using MTO/H2O2 as the oxidizing agents achieve great 

yields with water as the only by-product. The catalyzed reactions are typically 

thousands of time faster than the uncatalyzed reaction. The use of this catalytic 

system is also being expanded by the incorporation of co-catalysts with their faster 

rates and selectivity adding a new dimension to these reactions. 

The coordination of oxygen to Co(II)salen compounds was explored by 

studying the rates of binding. These rates were not obtained to a high degree of 

accuracy, but led to the development of conditions making the determination of 

oxygen binding rate constants for other compounds more accessible. By 

incorporating a radical trapping agent into the reaction solution, the formation 
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of Co(in)-C)2* can be monitored without interference of the peroxo radicals, upon 

photolysis of Co(in)-alkyl compounds. This new method is still unproven, but 

with so few methods available, it should prove to be very useful. 

By using different metals, the controlled oxidation of compounds with 

hydrogen peroxide and activation of molecular oxygen can be achieved. A large 

amount of work remains to be done in the future of oxidation reactions. This 

work will continue to be carried out by this researcher as well as many others. 
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